Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images

نویسندگان

  • Lorenzo Bruzzone
  • Diego Fernández-Prieto
چکیده

An unsupervised retraining technique for a maximum likelihood (ML) classifier is presented. The proposed technique allows the classifier’s parameters, obtained by supervised learning on a specific image, to be updated in a totally unsupervised way on the basis of the distribution of a new image to be classified. This enables the classifier to provide a high accuracy for the new image even when the corresponding training set is not available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images

In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...

متن کامل

Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images

In this paper, we propose a classification system based on a multiple-classifier architecture, which is aimed at updating land-cover maps by using multisensor and/or multisource remote-sensing images. The proposed system is composed of an ensemble of classifiers that, once trained in a supervised way on a specific image of a given area, can be retrained in an unsupervised way to classify a new ...

متن کامل

A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps

A system for a regular updating of land-cover maps is proposed that is based on the use of multitemporal remote sensing images. Such a system is able to address the updating problem under the realistic but critical constraint that, for the image to be classified (i.e., the most recent of the considered multitemporal dataset) no ground truth information is available. The system is composed of an...

متن کامل

Spatial dynamics for relative contribution of cropping pattern analysis on environment by integrating remote sensing and GIS

Agriculture resources reflected to be one of the most imperative renewable and dynamic natural resources. Agricultural sustainability has the premier priority in all countries, whether developed or developing. Cropping system analysis is indispensable for grinding the sustainability of agricultural science. Crop alternation is stated as growing one crop after another on the same piece of la...

متن کامل

A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images

A partially unsupervised approach to the classification of multitemporal remote-sensing images is presented. Such an approach allows the automatic classification of a remote-sensing image for which training data are not available, drawing on the information derived from an image acquired in the same area at a previous time. In particular, the proposed technique is based on a cascade-classifier ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2001